home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
HQR.z
/
HQR
Wrap
Text File
|
1996-03-14
|
4KB
|
67 lines
____HHHHQQQQRRRR((((3333FFFF)))) ____HHHHQQQQRRRR((((3333FFFF))))
NNNNAAAAMMMMEEEE
HQR, SHQR - EISPACK routine. This subroutine finds the eigenvalues of
a REAL UPPER Hessenberg matrix by the QR method.
SSSSYYYYNNNNOOOOPPPPSSSSYYYYSSSS
ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee hhhhqqqqrrrr((((nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, hhhh,,,, wwwwrrrr,,,, wwwwiiii,,,, iiiieeeerrrrrrrr))))
iiiinnnntttteeeeggggeeeerrrr nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, iiiieeeerrrrrrrr
ddddoooouuuubbbblllleeee pppprrrreeeecccciiiissssiiiioooonnnn hhhh((((nnnnmmmm,,,,nnnn)))),,,, wwwwrrrr((((nnnn)))),,,, wwwwiiii((((nnnn))))
ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee sssshhhhqqqqrrrr((((nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, hhhh,,,, wwwwrrrr,,,, wwwwiiii,,,, iiiieeeerrrrrrrr))))
iiiinnnntttteeeeggggeeeerrrr nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, iiiieeeerrrrrrrr
rrrreeeeaaaallll hhhh((((nnnnmmmm,,,,nnnn)))),,,, wwwwrrrr((((nnnn)))),,,, wwwwiiii((((nnnn))))
DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
On INPUT
NNNNMMMM must be set to the row dimension of two-dimensional array parameters
as declared in the calling program dimension statement.
NNNN is the order of the matrix.
LLLLOOOOWWWW and IGH are integers determined by the balancing subroutine BALANC.
If BALANC has not been used, set LOW=1, IGH=N.
HHHH contains the upper Hessenberg matrix. Information about the
transformations used in the reduction to Hessenberg form by ELMHES or
ORTHES, if performed, is stored in the remaining triangle under the
Hessenberg matrix. On OUTPUT
HHHH has been destroyed. Therefore, it must be saved before calling HQR
if subsequent calculation and back transformation of eigenvectors is to
be performed.
WWWWRRRR and WI contain the real and imaginary parts, respectively, of the
eigenvalues. The eigenvalues are unordered except that complex conjugate
pairs of values appear consecutively with the eigenvalue having the
positive imaginary part first. If an error exit is made, the eigenvalues
should be correct for indices IERR+1,...,N.
IIIIEEEERRRRRRRR is set to Zero for normal return, J if the J-th
eigenvalue has not been
determined after a total of 30*N iterations. Questions and comments
should be directed to B. S. Garbow, APPLIED MATHEMATICS DIVISION, ARGONNE
NATIONAL LABORATORY
PPPPaaaaggggeeee 1111